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Abstract

Hantaviruses are a group of viruses that infect wild rodents without causing any
apparent illness or disease. New discrete-time models for the spread of hantavirus in
a rodent population are formulated and analyzed. The models are structured by the
stages of the infection, the stages of development, and the sex of the rodent. The basic
reproduction number R0 is computed for the deterministic model and a condition is
given for a simplified model with males only to be permanent. A stochastic model is also
formulated. Numerical simulations illustrate the differences between the deterministic
and stochastic models and the dynamics in the male and female rodents. It is shown,
in the numerical examples, that a transcritical bifurcation occurs at R0 = 1 and a
unique enzootic equilibrium exists when R0 > 1. The sensitivity of the equilibrium
values to changes in the parameters is also investigated.

1 Introduction

Hantaviruses are viruses that persistently infect wild rodents without causing any apparent
illness or disease. However, they do produce disease in humans, either hantavirus pulmonary
syndrome (HPS in the Americas) or hemorrhagic fever with renal syndrome (HFRS in Europe
and Asia). Approximately 30 different hantaviruses are recognized throughout the world [22].
The widespread occurrence of HPS and its potential for severe human illness has identified
it as an emerging disease with a significant public health threat.

Each hantavirus is generally associated with a single rodent host known as the reservoir
host. Our goal is to formulate a realistic model for hantavirus in the reservoir host that will
help us better understand how to prevent the spread of this disease to the human population.
The new model is a system of difference equations, structured by the stages of the infection
(susceptible and infected), the stages of development (juvenile, subadult, and adult) and the
sex of the rodent (male and female). Other models for the rodent-hantavirus interaction have
applied differential equations with stages for infection [1, 2, 3, 24] and males and females [4].
Our model is the first to consider the developmental stages of the rodent in a discrete-time
formulation. Hantavirus spread is primarily through infections acquired during post-weaning
intraspecific encounters [8]. Studies suggest that there are distinct differences in males and
females in their duration of shedding and viremia [10, 15, 16, 21, 25], as well as differences
in prevalence of hantavirus antibodies. In addition, males exhibit more aggressive behavior

1



than females [5, 9, 10, 21, 25]. Inclusion of developmental stages and gender differences in
our model will account for the differences in hantavirus seroprevalence seen in the field data.

In the next section, a susceptible-infected (SI) epidemic model with developmental stages
and gender is formulated. The basic reproduction number R0 is computed for this model. It
is shown for a simplified model with males only that the system is permanent. In section 3, a
stochastic model is formulated. Then, in section 4, numerical simulations of the deterministic
and stochastic models illustrate the differences in the models and of the persistent infection
dynamics between males and females. It is shown that a transcritical bifurcation occurs at
R0 = 1 and a unique enzootic equilibrium when R0 > 1. The sensitivity of the enzootic
equilibrium values to changes in parameter values is investigated numerically.

2 SI Deterministic Model

2.1 Description of Model

Rodents are classified as susceptible or infected (and infectious) and further classified by
gender, and stage of development. For male rodents, the variables Y = juveniles, C =
subadults, and M = adults. For female rodents, J = juveniles, D = subadults, F =
adults. We assume the juvenile and subadult stages are nonreproductive. The juvenile stage
is when newborn rodents are in the nest. The subadult stage is after juveniles leave the
nest but prior to reproduction. We assume that juvenile rodents have a small chance of
contracting the virus in the nest and that subadults mature quickly to adulthood, so that
the virus is only transmitted in the adult stage [5]. Data indicates that rodents infected
with hantavirus may remain infected for life [6, 18], therefore there is no recovery stage in
the model. A subscript S (susceptible) or I (infected and infectious) on the variables M, F
denote the infection status of the adult classes. For example, MS = susceptible adult males.
The total male population is denoted as NM = Y + C + MS + MI and the total female
population as NF = J + D + FS + FI . The total population size is equal to N = NM + NF .
Each developmental and infectious stage is followed over discrete time intervals t = 1, 2, . . . ,
where [t, t + 1] equals one month. We assume rodents remain juveniles for one month and
subadults for one month.

To model births, let

B(M, F ) =
2bMF

M + F

be the total number of births for M = MS + MI reproductive males and F = FS + FI

reproductive females. The function B is known as a harmonic mean birth function, where b
is the average litter size [7]. Juvenile rodents become reproductive adults in approximately
three months. Therefore, the birth function is divided by three.

To model the infection process, we assume that the number of encounters between sus-
ceptible and infected rodents are distributed randomly among the rodent population. Then
the number of encounters follows a Poisson distribution,

p(i) =
exp(−λ)λi

i!
, i = 0, 1, 2, . . . ,

where i is the number of infective encounters (that result in spread of infection from an
infectious individual to a susceptible individual) and λ is the average number of infective
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encounters per susceptible individual in the population during the interval [t, t + 1]. Since it
only takes one successful encounter to become infected, the probability a susceptible rodent
becomes infected is 1 − p(0). Female and male behavioral and immune system differences
suggest that the interaction of the virus with its host may be sexually dimorphic [13, 14].
Aggressive encounters between males contribute to higher seroprevalence in males; therefore,
it is reasonable to assume contacts among males are greater than among females [5, 9, 10,
21, 25]. The seroprevalence data in Paraguay also show a distinct difference between males
and females (seroprevalence in Akodon montensis males ≈ 20% versus females ≈ 6% for
years 2005 and 2006, unpublished data). Generally, male seroprevalence is approximately
3 to 5 times greater than female. If the average number of infective encounters by all
susceptible individuals with infected males or females satisfies the law of mass action, then
λS = (βMMI + βF FI)S, where contact with infected males or females is differentiated by
βM or βF , respectively. Hence,

1− p(0) = 1− exp(−βMMI − βF FI),

where βM � βF . Encounters between infected and susceptible rodents may also depend on
the particular developmental stage. Therefore, the parameters βM and βF may depend on
C, M, D or F . We differentiate these infective encounters by assuming different values for the
parameters, βνM or βνF for contacts between susceptible rodents in stages ν = C, M, D, F ,
respectively.

Density-dependent mortality takes the form of the well-known Beverton-Holt growth
equation. For example, in the simple case where the population is not structured by stage
or sex, then

N(t + 1) =
(b/6 + 1)N(t)K

K + (b/6)N(t)
= (b/6 + 1)N(t)L(N(t)),

where K is the carrying capacity. The constant b/6 appears because (b/2)/3 is the average
litter size per rodent per month. In addition to the density-dependent mortality, every stage
has probability µi, 0 < µi ≤ 1, i = Y,C, M, J,D, F, of surviving to the next time interval.
There are no deaths from hantavirus in the rodent population; hantavirus appears to have
no effect on rodent survival [8]. Births, infections, survival, and transitions in time [t, t + 1]
are followed by density-dependent deaths.

Based on the preceding assumptions, the SI difference equation model for the rodent
population has the following form:

Y (t + 1) =
1
3

[
B(M(t), F (t))

2

]
L(N(t))

C(t + 1) = [µY Y (t)]L(N(t))
MS(t + 1) = [µC exp(−βCF FI(t)− βCMMI(t))C(t)

+ µM exp(−βMF FI(t)− βMMMI(t))MS(t)]L(N(t)) (1)
MI(t + 1) = [µC(1− exp(−βCF FI(t)− βCMMI(t)))C(t)

+ µM{(1− exp(−βMF FI(t)− βMMMI(t)))MS(t) + MI(t)}]L(N(t))

J(t + 1) =
1
3

[
B(M(t), F (t))

2

]
L(N(t))

D(t + 1) = [µJJ(t)]L(N(t))
FS(t + 1) = [µD exp(−βDF FI(t)− βDMMI(t))D(t)

+ µF exp(−βFF FI(t)− βFMMI(t))FS(t)]L(N(t)) (2)
FI(t + 1) = [µD(1− exp(−βDF FI(t)− βDMMI(t)))D(t)

+ µF {(1− exp(−βFF FI(t)− βFMMI(t)))FS(t) + FI(t)}]L(N(t)).
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The initial conditions are positive and parameters are positive (except βij ≥ 0). There-
fore, it easily follows that solutions to (1)-(2) are positive for t ≥ 0.

2.2 Basic Reproduction Number

The next generation approach [11, 19, 20] is used to compute the basic reproduction number,
R0, the number of secondary infections caused by one infectious individual in an entirely
susceptible population [12]. If R0 < 1, then the disease-free equilibrium (DFE) is locally
asymptotically stable and if R0 > 1, the DFE is unstable.

To compute R0, first the DFE needs to be calculated. At the DFE, M̄I = 0 = F̄I . The
remaining equilibrium values are

Ȳ =
B̄L̄

6
, C̄ =

µY B̄L̄2

6
, M̄S =

µCµY B̄L̄3

6(1− µM L̄)
, J̄ =

B̄L̄

6
, D̄ =

µJB̄L̄2

6
, F̄S =

µDµJB̄L̄3

6(1− µF L̄)
.

The value B̄ is the birth function evaluated at the DFE and L̄ = K/[K + (b/6)E], where E is
the total population size at the DFE. For the case, µi ≡ µ for all stages i = Y,C, M, J,D, F,
we show that there exists a unique DFE under certain restrictions on µ. In this case, the
male and female equilibrium values are equal. Thus, B̄ = bM̄ and E = 2(M̄ + C̄ + Ȳ ).
A unique DFE exists if E is positive and unique. Applying the equation for M̄ , it can be
shown that E is the unique positive real root of the following cubic equation:

b3E3 + 6Kb2(3− µ)E2 + 36K2b(3− 2µ)E − 36K3(bµ2 + 6µ− 6) = 0.

It follows from Descartes’ rule of signs that there is a unique positive real root of this equation
if the constant term in the preceding cubic equation satisfies

µ >

√
9 + 6b− 3

b
. (3)

This unique equilibrium value E can be computed explicitly. In general, 0 < E ≤ K.
To form the next generation matrix, the eight state variables are divided into infectious

states, ~X = (MI , FI)
T , and noninfectious states, (Y,C, MS, J,D, FS)T . Focusing on the infec-

tious states, new infections ~F are separated from other transitions ~T, ~X(t+1) = ~F(t)+ ~T(t),

where ~F(t) isµC(1− exp(−βCF FI(t)− βCMMI(t)))C(t) + µM (1− exp(−βMF FI(t)− βMMMI(t)))MS(t)

µD(1− exp(−βDF FI(t)− βDMMI(t)))D(t) + µF (1− exp(−βFF FI(t)− βFMMI(t)))FS(t)

 L(N(t))

(4)

and ~T(t) = (µMMI(t), µF FI(t))
T . Computing the Jacobian matrices of ~F and ~T with respect

to the infectious states and evaluating at the DFE we obtain matrices F and T ,(
µCβCM C̄ + µMβMMM̄S µCβCF C̄ + µMβMF M̄S

µDβDMD̄ + µF βFM F̄S µDβDF D̄ + µF βFF F̄S

)
L̄ and

(
µM 0
0 µF

)
L̄, (5)

respectively. Matices F and T are nonnegative and ρ(T ) < 1. Thus I − T is invertible.
Matrix F(I − T )−1 is the next generation matrix and the basic reproduction number, R0 =
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ρ(F(I − T )−1), is the spectral radius of the next generation matrix [20], i.e.

R0 = ρ


(µCβCM C̄ + µMβMMM̄S)L̄

1− µM L̄

(µCβCF C̄ + µMβMF M̄S)L̄

1− µF L̄
(µDβDMD̄ + µF βFM F̄S)L̄

1− µM L̄

(µDβDF D̄ + µF βFF F̄S)L̄

1− µF L̄

 .

We have given the general form for R0, assuming a unique DFE exists. For the case µi ≡ µ,
i = Y,C, M, J,D, F , we have shown that a unique DFE exists. In this case, C̄ = D̄ and
M̄S = F̄S. Due to male aggressive behavior, a reasonable assumption is that transmission is
greater between two males than between males and females or two females. Hence, if we let
µi ≡ µ, βM be the male transmission coefficients and β be all other transmission coefficients,
then the basic reproduction number has a relatively simple form,

R0 =

[
βM + β

2
+

1

2

√
4β2 + (βM − β)2

]
µL̄(C̄ + M̄S)

1− µL̄
. (6)

The expression (6) reduces to a more recognizable form if βM = β,

R0 =
βµL̄

1− µL̄
2(C̄ + M̄S).

That is, R0 is the number of infective contacts by an infectious individual βN̄ = 2β(C̄ +M̄S)
during the individuals infectious period µL̄/(1 − µL̄) (i.e., number of secondary infections
caused by one infectious individual in an entirely susceptible population).

2.3 Permanence

Next, we focus on long-term survival of the population known as permanence or uniform
persistence. Model (1) and (2) is permanent if there exist δ1 > 0 and δ2 > 0 such that
δ1 < lim inft→∞N(t) ≤ lim supt→∞N(t) < δ2 for all positive initial conditions. We simplify
model (1) and (2), and consider only the males, assuming there are sufficient number of
females, where the birth function is replaced by B = bM . The simplified model (1) can be
expressed in the form ~x(t + 1) = Ax~x(t), where ~x = (Y, C, M)T and M = MS + MI . Matrix
Ax depends continuously on ~x and the simplified model is dissipative. Let A0 denote Ax

evaluated at the extinction equilibrium, ~x = ~0,

A0 =

 0 0 b/6
µY 0 0
0 µC µM

 .

The form of A0 and the fact that all parameters are positive implies that A0 is irreducible.
Hence, the simplified model is permanent if A0 has a dominant eigenvalue greater than one
(Theorem 3, pg. 519, [17]). The dominant eigenvalue of A0 is greater than one if and only
if the inherent net reproduction number

R =
b

6
µCµY + µM > 1. (7)

Inequality (7) is equivalent to (3) if the probability of survival between stages µi ≡ µ for
i = Y,C, M . In this case, the DFE exists and is feasible if and only if the simplified model
is permanent.
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3 SI Stochastic Model

A discrete-time stochastic model is formulated based on (1) and (2). Random variables
Y , C, . . . , FI are assumed to be discrete with values in {0, 1, . . .}. Similar assumptions
apply to the stochastic model as in the deterministic model, except the births, deaths,
and infections are expressed as probabilities. For example, a rodent in stage Y survives
to stage C during the interval [t, t + 1] with probability µY and does not survive with
probability 1 − µY . An adult male susceptible rodent becomes infected with probability
PM = 1 − exp(−βMF FI(t) − βMMMI(t)) and does not become infected with probability
1− PM .

For the birth process, we assume reproduction depends on the number of mating units
at time t, dB(M(t), F (t))/3e, where due denotes the smallest integer greater than or equal
to u. We assume each mating unit gives birth to r offspring with probability br, r = 0, 1, . . .,
where

∑∞
r=0 br = 1. In addition, the mean of the offspring distribution, {br}, is b =

∑∞
r=0 rbr,

where b is the average litter size. An offspring may be a male or female with probability 1/2.

4 Numerical Examples

Several numerical examples illustrate the dynamics of the SI deterministic and stochastic
models. Baseline parameter values are given in Table 1 for the first simulation (Fig. 1).
Because seroprevalence of hantavirus is approximately 3 to 5 times greater in males than
females, the contact rates are adjusted. Surprisingly, the male contact rates need to be
much greater than 3 to 5 times the females contact rates to obtain a seroprevalence of
3 to 5 times higher in males. Contact rates vary depending on hypothesized interactions
among the rodent population. Some contact rates are set to zero indicating that some of the
developmental stages have little or no interaction. The survival probability µ = 0.95 is the
same for all stages.

Param. Value Param. Value Param. Value Param. Value

K 200 rodents µ
0.95

month
b 3 rodents br


1/7 r = 0, 1, .., 6
0 otherwise

βCM
0.02

(month)(rodent)
βDM 0 βMM

0.01

(month)(rodent)
βFM

0.002

(month)(rodent)

βCF 0 βDF 0 βMF
0.004

(month)(rodent)
βFF

0.004

(month)(rodent)

Table 1: Baseline parameter values.

In Fig. 1(a), the number of infected males at t = 5 years is approximately 4 times greater
than females. The deterministic solution approaches an enzootic equilibrium. The total
proportion of the population infected is (M̄I + F̄I)/N̄ ≈ 17%. In Fig. 1(b), one sample
path of the stochastic model is graphed with the mean of 1000 stochastic sample paths.
Notice that the mean is close to the deterministic solution. One sample path illustrates the
variability in the number infected.

In Fig. 2(a), the proportion of infected male and female rodents is graphed as a function
of R0, where R0 is a function of the contact rates. At R0 = 1, there is a transcritical
bifurcation. It is clear from the graph that the proportion of infected males is about four
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Figure 1: (a) Deterministic solution, R0 = 1.55. (b) One stochastic sample path and the mean of 1000
sample paths.

times that of females when R0 ≈ 2. As R0 increases as a function of the contact rates, the
gap between infected male and female rodents decreases.

In Figs. 2(b) and 2(c), the enzootic equilibrium N̄ is graphed as a function of the male
and female contact rates, carrying capacity, and litter size. In Fig. 2(b), the infected pro-
portion quickly plateaus for relatively small values of the contact rates. Because juveniles
and subadults are not infected, the entire population does not become infected. In Fig. 2(c),
if carrying capacity K is fixed and litter size b increases, we see that the epidemic dies out.
We can attribute this phenomenon to the fact that the population size is fixed but a large
proportion of the offspring are not infected. A large number of births “flushes” out the pop-
ulation, increasing the number of susceptible juvenile and subadult rodents while decreasing
the number of infected adult rodents. The size of the infected population is greatest when
the carrying capacity is large, but the litter size is small.

Figure 2: (a) Graph of the proportion of infected rodents as a function of R0; βM = 10βF , where
βM = βMF = βMM = βCM = βCF and βF = βFF = βFM = βDM = βDF . Parameters are the same as
in Table 1, except for the contact rates. (b) Proportion of infected rodents, (MI + FI)/N , at the enzootic
equilibrium as a function of βM and βF . (c) Proportion of infected rodents at the enzootic equilibrium as a
function of carrying capacity K and litter size b.

5 Discussion

In this investigation, we formulated new discrete-time, stage-structured SI epidemic models
(deterministic and stochastic) for the spread of hantavirus in a rodent population. The
stochastic model illustrates the variability in number infected over time (Fig. 1(b)) when
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births, deaths, and transitions are modeled via a discrete-time Markov process. The inclusion
of juvenile and subadult stages in the model reduces the DFE of the population to a level
below K, E ≤ K. In addition, because the juvenile and subadult stages can not be infected,
it is impossible for all rodents in the population to be infected. To control the spread of
the infection, the most reasonable strategy is to reduce the population size. A population
reduction invariably decreases the contact rates. The model simulations show that the
proportion infected increases with K but decreases with litter size. However, this result
depends on the independence of litter size b and carrying capacity K, which may not be true
in general. Large population explosions (large number of births) often occur during periods
of highly favorable environmental conditions [23]. Favorable environmental conditions are
equivalent to a high K value in our models.
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